B cells constitute a complex system of antigen-presenting cells (APCs) and exist as distinct subsets that differ in their lineage affiliation, surface molecule expression, and biological function, thus potentially regulating the immune response. In this study, we investigated the immune-regulatory roles of murine B cell subsets as regulatory APCs targeting alloreactive T cells. Either splenic B cells, peritoneal cavity (PerC) B cells, or non-B cells from Balb/c mice were intravenously injected into B6 mice. Serum levels of anti-Balb/c antibodies in the recipients of PerC B cells were significantly lower than those in the recipients of splenic B cells and PerC non-B cells, as determined over a 4-week period after the injection. Mixed-lymphocyte reaction (MLR) assays using splenocytes from the B6 mice at 2 weeks after the injection revealed the significantly reduced anti-Balb/c T cell-responses in the recipients of PerC B cells, as compared to those in the recipients of splenic B cells or untreated control mice. Since PerC B cells contained MHC class II+ CD80+ CD86+ PD-L1+ PD-L2+ cells among the CD5+ B-1a cell subset, PerC B cells from Balb/c mice were pre-incubated with anti-PD-L1/PD-L2 mAbs prior to injection. This treatment abrogated their immune-regulatory effects on anti-Balb/c T cells in the MLR assays. In addition, the inoculation with Balb/c PerC B cells significantly prolonged the survival of subsequently grafted Balb/c hearts in B6 mouse recipients, whereas that with SPL B cells did not. These findings indicate that the PerC B cells, including PD-L1/PD-L2 B-1a cells, may suppress T cells responding to allostimulation, and thus may be optimal for donor lymphocyte injection.