Viruses shape a diversity of ecosystems by modulating their microbial, eukaryotic, or plant host metabolism. The complexity of virus-host interaction networks is progressively fathomed by novel metagenomic approaches. By using a novel metagenomic method, we explored the virome in mammalian cell cultures and clinical samples to identify an extensive pool of mobile genetic elements in all of these ecosystems. Despite aseptic treatment, cell cultures harbored extensive and diverse phage populations with a high abundance of as yet unknown and uncharacterized viruses (viral dark matter). Unknown phages also predominated in the oropharynx and urine of healthy individuals and patients infected with cytomegalovirus despite demonstration of active cytomegalovirus replication. The novelty of viral sequences correlated primarily with the individual evaluated, whereas relative abundance of encoded protein functions was associated with the ecologic niches probed. Together, these observations demonstrate the extensive presence of viral dark matter in human and artificial ecosystems.-Thannesberger, J., Hellinger, H.-J., Klymiuk, I., Kastner, M.-T., Rieder, F. J. J., Schneider, M., Fister, S., Lion, T., Kosulin, K., Laengle, J., Bergmann, M., Rattei, T., Steininger, C. Viruses comprise an extensive pool of mobile genetic elements in eukaryote cell cultures and human clinical samples.