Although waterfowl are the primary reservoir for multiple subtypes of influenza A virus (IAV), our understanding of population immunity in naturally infected waterfowl is poorly understood. Population immunity may be an important driver of seasonal subtype predominance in waterfowl populations and may affect the potential for establishment of introduced IAV such as the Eurasian-like A/Goose/Guangdong/1/1996 lineage in these populations. Here, we examine the prevalence of naturally acquired antibodies to nucleoprotein (NP), hemagglutinin (H3, H4, H5), and neuraminidase (N1, N2, N6, N8) in early migrating mallards (Anas platyrhynchos) sampled in Northwest Minnesota during staging and early fall migration in September 2014, 2015, 2017, and 2018. Serologic results were compared to historic and contemporary virus isolation results from these same study sites. The prevalence of antibodies to NP ranged from 60.8–76.1% in hatch-year (HY) birds and from 86.0–92.7% in after-hatch-year (AHY, >1-year-old) mallards indicating a high level of previous infection with IAV early in the fall migration season. Neutralizing antibodies were detected against H3, H4, and H5 in all years as were antibodies to N1, N2, N6, and N8. A high proportion of NP seropositive ducks tested positive for antibodies to multiple HA and NA subtypes, and this was more common in the AHY age class. Antibody prevalence to the HA and NA subtypes included in this study were consistent with the predominance of H4N6 in these populations during all years and reflected a broadening of the antibody response with age. Additional work is needed to document the longevity of these immune responses, if and how they correlate with protection against IAV transmission, infection, and disease, and if, as detected in this study, they adequately describe the true extent of exposure to IAV or specific HA or NA subtypes.