The ciprofloxacin-resistance crpP gene, encoded by the pUM505 plasmid, isolated from a
P. aeruginosa
clinical isolate, confers an enzymatic mechanism of antibiotic phosphorylation, which is ATP-dependent, that decreases ciprofloxacin susceptibility. Homologous crpP genes are distributed across extended spectrum beta-lactamase (ESBL)-producing isolates obtained from Mexican hospitals and which confer decreased susceptibility to CIP. The analysis of sequences of the CrpP of proteins showed that the residues Gly7, Thr8, Asp9, Lys33 and Gly34 (located at the N-terminal region) and Cys40 (located at the C-terminal region) are conserved in all proteins, suggesting that these residues could be essential for CrpP function. The aim of this study was to investigate the amino acids essential to ciprofloxacin resistance, which is conferred by the CrpP protein of pUM505 plasmid. Mutations in the codons encoding Gly7, Asp9, Lys33 and Cys40 of CrpP protein from pUM505 were generated by PCR fusion. The results showed that all mutations generated in CrpP proteins increased ciprofloxacin susceptibility in
Escherichia coli
. In addition, the CrpP modified proteins were purified and their enzymatic activity on ciprofloxacin was assayed, showing that these modified proteins do not exert catalytic activity on ciprofloxacin. Moreover, by infrared assays it was determined that the modified proteins were are not able to modify the ciprofloxacin molecule. Our findings are the first report that indicate that the amino acids, namely Gly7, Asp9, Lys33 and Cys40, which are conserved in the CrpP proteins, possess an essential role for the enzymatic mechanism that confers ciprofloxacin resistance.