Several groundwater-level forecasting studies have shown that data-driven models are simpler, faster to develop, and provide more accurate and precise results than physical or numerical-based models. Five data-driven models were examined for the forecasting of groundwater levels as a result of recharge via tailings from an abandoned mine in Quebec, Canada, for lead times of 1 day, 1 week and 1 month. The five models are: a multiple linear regression (MLR); an artificial neural network (ANN); two models that are based on de-noising the model predictors using the wavelet-transform (W-MLR, W-ANN); and a W-ensemble ANN (W-ENN) model. The tailing recharge, total precipitation, and mean air temperature were used as predictors. The ANN models performed better than the MLR models, and both MLR and ANN models performed significantly better after denoising the predictors using wavelet-transforms. Overall, the W-ENN model performed best for each of the three lead times. These results highlight the ability of wavelettransforms to decompose non-stationary data into discrete wavelet-components, highlighting cyclic patterns and trends in the time-series at varying temporal scales, rendering the data readily usable in forecasting. The good performance of the W-ENN model highlights the usefulness of ensemble modeling, which ensures model robustness along with improved reliability by reducing variance. a Original time series b Approximation component at the seventh decomposition level c Approximation component at the ninth decomposition level d Based on the approximation component at the sixth decomposition level 132