Coal dust is a major safety hazard in the process of coal mining and is of great importance to ensure production safety and maintain the health of operators. In order to understand the microscopic mechanism during coal seam water injection and reveal the mechanism of surfactants in improving the wettability of coal dust, coking coal was selected as the research object. Three surfactants, SDBS, AEO-9, and CAB-35, were chosen for molecular dynamics simulation research on the wetting and adsorption properties of water/coal/surfactants. The results show that surfactant molecules can cover the hydrophobic groups on the surface of coking coal, forming a hydrophilic adsorption layer, changing the coal surface from hydrophobic to hydrophilic, and enhancing the wettability. After adding surfactants, the thickness of the adsorption layer in the z-axis direction increases, expanding the contact area between coking coal and water molecules, thereby improving the wettability. When surfactants tightly cover the surface of coking coal, their binding strength increases, forming a more stable hydrophilic layer and further improving the wettability. At the same time, surfactants promote the diffusion of water molecules and enhance the interaction between hydrophobic alkyl chains and water molecules, further enhancing the wetting effect.