Group B streptococci (GBSs) are the leading cause of neonatal meningitis. GBSs enter the CNS by penetrating the blood-brain barrier (BBB), which consists of specialized human brain microvascular endothelial cells (hBMECs). To identify GBS factors required for BBB penetration, we generated random mutant libraries of a virulent strain and screened for loss of hBMEC invasion in vitro. Two independent hypo-invasive mutants possessed disruptions in the same gene, invasion associated gene (iagA), which encodes a glycosyltransferase homolog. Allelic replacement of iagA in the GBS chromosome produced a 4-fold decrease in hBMEC invasiveness. Mice challenged with the GBS ∆iagA mutant developed bacteremia comparably to WT mice, yet mortality was significantly lower (20% vs. 90%), as was the incidence of meningitis. The glycolipid diglucosyldiacylglycerol, a cell membrane anchor for lipoteichoic acid (LTA) and predicted product of the IagA glycosyltransferase, was absent in the ∆iagA mutant, which consequently shed LTA into the media. Attenuation of virulence of the ∆iagA mutant was found to be independent of TLR2-mediated signaling, but bacterial supernatants from the ∆iagA mutant containing released LTA inhibited hBMEC invasion by WT GBS. Our data suggest that LTA expression on the GBS surface plays a role in bacterial interaction with BBB endothelium and the pathogenesis of neonatal meningitis.