c Clostridium difficile toxins A and B (TcdA and TcdB) are homologous glycosyltransferases that inhibit a group of small GTPases within host cells, but several mechanisms underlying their pathogenic activity remain unclear. In this study, we evaluated the effects of TcdA on the Wnt/-catenin pathway, the major driving force behind the proliferation of epithelial cells in colonic crypts. IEC-6 and RKO cells stimulated with Wnt3a-conditioned medium were incubated with 10, 50, and 100 ng/ml of TcdA for 24 h, resulting in a dose-dependent inhibition of the Wnt signaling, as demonstrated by a T-cell factor (TCF) reporter assay. This was further confirmed by immunofluorescence staining for nuclear localization of -catenin and Western blotting for -catenin and c-Myc (encoded by a Wnt target gene). Moreover, our Western blot analysis showed a decrease in the -catenin protein levels, which was reversed by z-VAD-fmk, a pan-caspase inhibitor. Nonetheless, TcdA was still able to inhibit the Wnt/-catenin pathway even in the presence of z-VAD-fmk, lithium chloride (a GSK3 inhibitor), or constitutively active -catenin, as determined by a TCF reporter assay. Furthermore, preincubation of RKO cells with TcdA for 12 h also attenuated Wnt3a-mediated activation of Wnt signaling, suggesting that inactivation of Rho GTPases plays a significant role in that inhibition. Taken together, these findings suggest that attenuation of the Wnt signaling by TcdA is important for TcdA antiproliferative effects.