Yogurt from Xinjiang, China, is a traditional and naturally fermented food, and abundant microorganisms are produced during its fermentation process. In this study, we carried out in vivo animal experiments to explore the effect of a newly isolated lactic acid bacterial strain, Lactobacillus plantarum KSFY02 (LP-KSFY02), on oxidative aging. We used d-galactose to induce oxidative aging in mice and analyzed the serum and tissues of those mice using molecular biology detection methods. The results showed that LP-KSFY02 could inhibit the decreases in the thymic, cerebral, cardiac, liver, spleen, and kidney indices of mice caused by oxidative aging. The LP-KSFY02 strain increased activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) and reduced levels of nitric oxide (NO) and malondialdehyde in the serum, liver, and spleen of the oxidative aging mice. Pathological observation demonstrated that LP-KSFY02 alleviated damage to the liver and spleen of oxidative aging mice. Quantitative PCR showed that LP-KSFY02 effectively upregulated mRNA expression of neuronal nitric oxide synthase (Nos1), endothelial nitric oxide synthase (Nos3), copper/zinc superoxide dismutase (Sod1), manganese superoxide dismutase (Sod2), catalase (Cat), heme oxygenase-1 (Hmox1), nuclear factor erythroid 2 related factor 2 (Nfe2l2), γ-glutamylcysteine synthetase (Gclm), and quinone oxidoreductase 1 (Nqo1) in mouse liver and spleen and downregulated expression of inducible nitric oxide synthase (Nos2). Western blot analysis revealed that LP-KSFY02 effectively upregulated protein expression of SOD1, SOD2, CAT, GSH1, and GSH2 in mouse liver and spleen tissues. Therefore, LP-KSFY02 can effectively prevent d-galactose-induced oxidative aging in mice. Its efficacy was superior to that of Lactobacillus delbrueckii ssp. bulgaricus (LDSB) and vitamin C, which are commonly used in the medical field as antioxidants. Thus, LP-KSFY02 is a high-quality strain with probiotic potential.