Thirty thousand years ago, humans kept track of numerical quantities by carving slashes on fragments of bone. It took approximately 25,000 y for the first iconic written numerals to emerge among human cultures (e.g., Sumerian cuneiform). Now, children acquire the meanings of verbal counting words, Arabic numerals, written number words, and the procedures of basic arithmetic operations, such as addition and subtraction, in just 6 y (between ages 2 and 8). What cognitive abilities enabled our ancestors to record tallies in the first place? Additionally, what cognitive abilities allow children to rapidly acquire the formal mathematics knowledge that took our ancestors many millennia to invent? Current research aims to discover the origins and organization of numerical information in humans using clues from child development, the organization of the human brain, and animal cognition.analog magnitude | functional MRI | mathematics education | numerical cognition | numerosity T his review traces the origins of numerical processing from "primitive" quantitative abilities to math intelligence quotient (IQ). "Primitive" quantitative abilities are those that many animals use to estimate the value of an object or event, for instance its distance, length, duration, number, amplitude, saturation, or luminance (among others). The constraints on how human and animal minds process these different quantities are similar (1). For example, all of these quantities show cognitive processing limitations that can be predicted by Weber's law. Weber's law states that quantity discrimination is determined by the objective ratio between their values. This ratio-based psychological and neural signature of quantity processing indicates that many quantities are represented in an analog format, akin to the way in which a machine represents intensities in currents or voltages (1). I discuss the types of constraints that influence quantity discrimination, using "number" as the initial example, and then consider the psychological and neural relationship between "number" and other quantitative dimensions. Similar constraints on processing across different quantities have been interpreted as evidence that they have a common evolutionary and/or developmental origin and a common foundation in the mind and brain (2-11). The resolution of these issues is important for understanding the inherent organization of our most basic conceptual faculties. The issue is also important for understanding how our formal mathematical abilities originated.Primitive quantitative abilities play a role in how modern humans learn culture-specific, formal mathematical concepts (1). Preverbal children and nonhuman animals possess a primitive ability to appreciate quantities, such as the approximate number of objects in a set, without counting them verbally. Instead of counting, children and animals can mentally represent quantities approximately, in an analog format. Studies from our group and others have shown that human adults, children, and nonhuman primates share cogni...