Resonant column (RC) and the torsional simple shear (TOSS) tests have shown proven competency in acquiring precise and repeatable measurements regarding the shear modulus and damping ratio of soil. For most dynamic geotechnical problems, the shear modulus represents the stiffness of the soil, while the damping ratio describes energy dissipation. Many studies in the last few decades focused on developing the relevant equipment and investigating the effect of different soil properties on the dynamic behavior of soil. Researchers have introduced correlations to approximate this behavior without conducting dynamic torsional testing. Soil models (e.g., Ramberg-Osgood and Hardin-Drnevich) can simulate shear stress-strain curves after finding the curve-fitting parameters. Due to the complexity of dynamic behavior and its dependency on various factors in soils, the RO and HD equations help model the behavior more simply. This paper presents a literature review and evaluation of the studies, correlations, soil models, and parameters affecting the dynamic behavior of dry sand under torsion.