Genetic diversity within species is the basis for evolutionary adaptive capacity and has recently been included as a target for protection in the United Nations Global Biodiversity Framework (GBF). However, there is a lack of reliable large-scale predictive frameworks to quantify how much genetic diversity has already been lost, let alone to quantitatively predict future losses under different conservation scenarios in the 21st century. Combining spatio-temporal population genetic theory with population genomic data of 18 plant and animal species, we studied the dynamics of genetic diversity after habitat area losses. We show genetic diversity reacts slowly to habitat area and population declines, but lagged losses will continue for many decades even after habitats are fully protected. To understand the magnitude of this problem, we combined our predictive method with species' habitat area and population monitoring reported in the Living Planet Index, the Red List, and new GBF indicators. We then project genetic diversity loss in 13,808 species with a short-term genetic diversity loss of 13-22% and long-term loss of 42-48% with substantial deviations depending on the level of habitat fragmentation. These results highlight that protection of only current habitats is insufficient to ensure the genetic health of species and that continuous genetic monitoring alone likely underestimates long term impacts. We provide an area-based spatio-temporal predictive framework to develop quantitative scenarios of global genetic biodiversity.