Asian options are securities with a payoff that depends on the average of the underlying stock price over a certain time interval. We identify three natural assets that appear in pricing of the Asian options, namely a stock S, a zero coupon bond BT with maturity T, and an abstract asset A (an “average asset”) that pays off a weighted average of the stock price number of units of a dollar at time T. It turns out that each of these assets has its own martingale measure, allowing us to obtain Black–Scholes type formulas for the fixed strike and the floating strike Asian options. The model independent formulas are analogous to the Black–Scholes formula for the plain vanilla options; they are expressed in terms of probabilities under the corresponding martingale measures that the Asian option will end up in the money. Computation of these probabilities is relevant for hedging. In contrast to the plain vanilla options, the probabilities for the Asian options do not admit a simple closed form solution. However, we show that it is possible to obtain the numerical values in the geometric Brownian motion model efficiently, either by solving a partial differential equation numerically, or by computing the Laplace transform. Models with stochastic volatility or pure jump models can be also priced within the Black–Scholes framework for the Asian options.