Abstract. The epidermal growth factor receptor (EGFR) family members are potential targets for therapy using extracellular domain receptor binding agents, such as the antibodies trastuzumab and cetuximab, or antibodies labeled with therapeutically useful radionuclides or toxins. This is especially the case when the tumor cells are resistant to chemotherapy and tyrosine kinase inhibitors. Studies concerning the expression of these receptors in prostate cancer vary in the literature, possibly due to differences in patient inclusion, sample preparations and scoring criteria. In our study, EGFR, HER2 and HER3 expression was analyzed in prostate cancer samples from primary tumors and corresponding lymph node metastases from 12 patients. The expression of HER2 and EGFR was scored from immunohistochemical preparations and the HercepTest criteria (0, 1+, 2+ or 3+), while HER3 expression was scored as no, weak or strong staining. There were 5 EGFR-positive (2+ or 3+) primary tumors and 6 EGFR-positive lymph node metastases, and there was EGFR upregulation in one metastasis. Only 4 of the 12 patients had marked HER2 expression (2+ or 3+) in their primary tumors and there was one downregulation and 5 cases of upregulation in the metastases. Thus, a total of 8 out of 12 analyzed metastases were HER2-positive. Of the 12 primary tumors, 9 expressed HER3 while only 2 of the lymph node metastases expressed recognizable HER3 staining, so 7 metastases appeared to have downregulated HER3 expression.In one of the primary tumors there was positive co-expression of EGFR and HER2, while this co-expression was observed in 4 of the metastases. Thus, there were tendencies for upregulation of HER2, increased co-expression of EGFR and HER2 and downregulation of HER3 in the prostate cancer lymph node metastases in comparison to the primary tumors. The results are encouraging for studies involving more patients. Possible strategies for EGFR-and HER2-targeted therapy are briefly discussed in the present study, especially with regard to the expression and co-expression of EGFR and HER2 in metastases.