In order to investigate how familial biodiversity structures forests in the critically important Amazon, I combined past plot samplings to investigate the contributions of tree families in those samplings to the structure of common Amazon forest types. I found that the families Arecaceae, Fabaceae, Clusiaceae, and Malvaceae had the most stems; Staphyleaceae, Caricaceae, and Anacardiaceae had the largest stems; Arecaceae, Fabaceae, Lecythidaceae, and Malvaceae had the largest basal area; Fabaceae, Malvaceae, and Sapotaceae had the most genera; Annonaceae, Euphorbiaceae, Fabaceae, Lauraceae, Malvaceae, Moraceae, and Sapotaceae had the most species, and the maximum Fisher’s α diversity index was found for many families. Together, results suggest that Fabaceae and Malvaceae are the most important families structuring these forests, but also that Arecaceae and Sapotaceae may be important. Thus, conservationists and managers may help sustain structure in these forests by propagating and maintaining species in these families. Finally, correlations between total number of stems and basal area, and between total number of genera and total number of species, suggest a causal relationship between them as they structure these forests, but the lack of correlations with Fisher’s α suggest it has little structural utility for these forests.