One of the main contributors to poor productivity and elevated mortality of honey bee colonies globally is insecticide exposure. Whole-organism and colony-level studies have demonstrated the effects of insecticides on many aspects of honey bee biology and have also shown their interactions with pathogens. However, there is a need for in vitro studies using cell lines to provide greater illumination of the effects of insecticides on honey bee cellular and molecular processes. We used a continuous cell line established from honey bee embryonic tissues (AmE-711) in assays that enabled assessment of cell viability in response to insecticide exposure. We exposed AmE-711 cells to four formulations, each containing a different insecticide. Treatment of cells with the insecticides resulted in a concentration-dependent reduction in viability after a 24-h exposure, whereas long-term exposure (120 h) to sublethal concentrations had limited effects on viability. The 24-h exposure data allowed us to predict the half-maximal lethal concentration (LC50) for each insecticide using a four-parameter logistical model. We then exposed cells for 12 h to the predicted LC50 and observed changes in morphology that would indicate stress and death. Reverse transcription-quantitative polymerase chain reaction analysis corroborated changes in morphology: expression of a cellular stress response gene, 410087a, increased after an 18-h exposure to the predicted LC50. Demonstration of the effects of insecticides through use of AmE-711 provides a foundation for additional research addressing issues specific to honey bee toxicology and complements whole-organism and colony-level approaches. Moreover, advances in the use of AmE-711 in high-throughput screening and in-depth analysis of cell regulatory networks will promote the discovery of novel control agents with decreased negative impacts on honey bees. Environ Toxicol