Alopecia areata is among the most prevalent autoimmune diseases, yet compared with other autoimmune conditions is not well studied. This in part results from limitations in the C3H/HeJ mouse and DEBR rat model systems most commonly used to study the disease, which display a low frequency and late onset. We describe a novel high incidence model for spontaneous alopecia areata. The 1MOG244 T cell expresses dual TCRA chains, one of which, when combined with the single TCRB present, promotes the development of CD8+ T cells with specificity for hair follicles. Retroviral transgenic mice expressing this TCR develop spontaneous alopecia areata at nearly 100% incidence. Disease initially follows a reticular pattern, with regionally cyclic episodes of hair loss and regrowth, and ultimately progresses to alopecia universalis. Alopecia development is associated with CD8+ T cell activation, migration into the intrafollicular region, and hair follicle destruction. The disease may be adoptively transferred with T lymphocytes, and is class I and not class II MHC-dependent. Pathologic T cells primarily express IFNG and IL17 early in disease, with dramatic increases in cytokine production and recruitment of IL4 and IL10 production with disease progression. Inhibition of individual cytokines did not significantly alter disease incidence, potentially indicating redundancy in cytokine responses. These results therefore characterize a new high incidence model for alopecia areata in C57BL/6J mice, the first to apply a monoclonal TCR, and indicate that class I MHC-restricted CD8+ T lymphocytes can independently mediate the pathologic response.