Using a quasispherical, microwave cavity resonator, we measured the refractive index of helium to deduce its molar polarizability A(epsilon) in the limit of zero density. We obtained (A(epsilon,meas) - A(epsilon,theory))/A(epsilon) = (-1.8 +/- 9.1) x 10(-6), where the standard uncertainty (9.1 ppm) is a factor of 3.3 smaller than that of the best previous measurement. If the theoretical value of A(epsilon) is accepted, these data determine a value for the Boltzmann constant that is only 1.8 +/- 9.1 ppm larger than the accepted value. Our techniques will enable a helium-based pressure standard and measurements of thermodynamic temperatures.