Secretory IgA (SIgA) is a multi-polypeptide complex consisting of a secretory component (SC) covalently attached to dimeric IgA containing one joining (J) chain. We present the analysis of both the N-and O-glycans on the individual peptides from this complex. Based on these data, we have constructed a molecular model of SIgA1 with all its glycans, in which the Fab arms form a T shape and the SC is wrapped around the heavy chains. The O-glycan regions on the heavy (H) chains and the SC N-glycans have adhesin-binding glycan epitopes including galactose-linked 1-4 and 1-3 to GlcNAc, fucoselinked ␣1-3 and ␣1-4 to GlcNAc and ␣1-2 to galactose, and ␣2-3 and ␣2-6-linked sialic acids. These glycan epitopes provide SIgA with further bacteria-binding sites in addition to the four Fab-binding sites, thus enabling SIgA to participate in both innate and adaptive immunity. We also show that the N-glycans on the H chains of both SIgA1 and SIgA2 present terminal GlcNAc and mannose residues that are normally masked by SC, but that can be unmasked and recognized by mannosebinding lectin, by disrupting the SC-H chain noncovalent interactions.