Background. Solubility is a fundamental physicochemical property of active pharmaceutical ingredients. The optimization of a dissolution medium aims not only to increase solubility and other aspects are to be included such as environmental impact, toxicity degree, availability, and costs. Obtaining comprehensive solubility characteristics of chemical compounds is a non-trivial and demanding process. Therefore, support from theoretical approaches is of practical importance.Objectives. This study aims to examine the accuracy of the reference solubility approach in the case of sulfanilamide dissolution in a variety of binary solvents. This pharmaceutically active substance has been extensively studied, and a substantial amount of solubility data is available. Unfortunately, using this set of data directly for theoretical modeling is impeded by noticeable inconsistencies in the published solubility data. Hence, this aspect is addressed by data curation using theoretical and experimental confirmations.
Materials and methods.In the experimental part of our study, the popular shake-flask method combined with ultraviolet (UV) spectrophotometric measurements was applied for solubility determination. The computational phase utilized the conductor-like screening model for real solvents (COSMO-RS) approach.Results. The analysis of the results of solubility calculations for sulfonamide in binary solvents revealed abnormally high error values for acetone-ethyl acetate mixtures, which were further confirmed with experimental measurements. Additional confirmation was obtained by extending the solubility measurements to a series of homologous acetate esters.
Conclusions.Our study addresses the crucial issue of coherence of solubility data used for many theoretical inquiries, including parameter fitting of semi-empirical models, in-depth thermodynamic interpretations and application of machine learning protocols. The effectiveness of the proposed methodology for dataset curation was demonstrated for sulfanilamide solubility in binary mixtures. This approach enabled not only the formulation of a consistent dataset of sulfanilamide solubility binary solvent mixtures, but also its implementation as a qualitative tool guiding rationale solvent selection for experimental solubility screening.