Let
(
X
,
B
X
,
μ
,
T
)
(\mathcal {X},\mathscr {B}_\mathcal {X},\mu ,T)
be a measure-preserving probability system with
T
T
is invertible. Suppose that
A
∈
B
X
A\in \mathscr {B}_\mathcal {X}
with
μ
(
A
)
>
0
\mu (A)>0
and
ϵ
>
0
\epsilon >0
. For any
m
≥
1
m\geq 1
, there exist infinitely many primes
p
0
,
p
1
,
…
,
p
m
p_0,p_1,\ldots ,p_m
with
p
0
>
⋯
>
p
m
p_0>\cdots >p_m
such that
μ
(
A
∩
T
−
(
p
i
−
1
)
A
)
≥
μ
(
A
)
2
−
ϵ
\begin{equation*} \mu (A\cap T^{-(p_i-1)}A)\geq \mu (A)^2-\epsilon \end{equation*}
for each
0
≤
i
≤
m
0\leq i\leq m
and
p
m
−
p
0
>
C
m
,
A
,
ϵ
,
\begin{equation*} p_m-p_0>C_{m,A,\epsilon }, \end{equation*}
where
C
m
,
A
,
ϵ
>
0
C_{m,A,\epsilon }>0
is a constant only depending on
m
m
,
A
A
and
ϵ
\epsilon
.