The perception that most microorganisms live as complex communities that are attached to surfaces has profoundly changed microbiology over the past decades. Most, if not all, bacteria can form biofilms, which are communities of cells embedded in a porous extracellular matrix.Dental plaque, the microorganisms on catheters and implants that cause persistent infections and the fouling of ship hulls and pipework are all examples of biofilms with important implications for public health and industrial processes. Most contemporary biofilm research rests on the discovery made more than 35 years ago by Maurice Lock, Gill Geesey and Bill Costerton: bacteria attached to surfaces dominate microbial life in streams [1][2][3] . These microbiologists pioneered research into stream biofilms, also termed periphyton or epilithon, and described them as complex aggregates of bacteria, algae, protozoa, fungi and meiobenthos. The early study of stream biofilms also highlighted the relevance of interactions between microbial phototrophs and heterotrophs for energy fluxes and the role of the biofilm matrix as the site of extracellular enzyme activity and adsorption of dissolved organic matter (DOM) 3,4 .Since these early days, the study of the ecology and biogeochemistry of stream biofilms has slowly developed in the wake of thriving research on bacterial biofilms -often comprising 3 only a single strain, of interest to medical microbiology, rather than the polymicrobial communities found in stream biofilms -and on the microbial ecology of marine and lake planktonic communities 5 . Unlike bacterial biofilms grown in the laboratory, biofilms in streams are continuously exposed to a diverse inoculum that includes bacteria, archaea, algae, fungi, protozoa and even metazoa. These diverse biological 'building blocks', when combined with the dynamic flow of streamwater, generate biofilms with inherently complex and varying physical structures that have implications for microbial functioning and ecosystem processes 6 . In streams, biofilms are key sites of enzymatic activity 7 , including organic matter cycling, ecosystem respiration and primary production and, as such, form the basis of the food web.Why should we study the ecology and biogeochemistry of stream biofilms? Streams sculpt the continental surface, forming dense and conspicuous channel networks that can be thought of as ecological arteries that perfuse the landscape. Streams are connected to their catchments through various surface and subsurface flow paths and notably through the hyporheic zone in the streambed at the interface between groundwater and streamwater 8 . Microbial cells, solutes and particles enter streams through these flow paths and, en route to downstream ecosystems and ultimately to the oceans, they may interact with the biofilms that colonize the large surface area provided by the streambed as a 'microbial skin' (BOX 1). As a result, the streambed and its biofilm microbiome contribute to biogeochemical fluxes 8 . Indeed, stream biofilms are now recognized as su...