Epigallocatechin-3-gallate (EGCG), the major green tea polyphenol, can reach the brain following oral intake and could thus act as an anti-tumoral agent targeting several key steps of brain cancer cells invasive activity. Because integrin-mediated extracellular matrix recognition is crucial during the cell adhesion processes involved in carcinogenesis, we have investigated the effects of EGCG on different cellular integrins of the pediatric brain tumor-derived medulloblastoma cell line DAOY. Using flow cytometry, we report the levels of expression of several cell surface integrins in DAOY. These include high expression of alpha2, alpha3, and beta1 integrins, as well as alphav and beta3 integrins. Moreover, we provide evidence that EGCG can antagonize DAOY cell migration specifically on collagen by increasing cell adhesive ability through specific gene and protein upregulation of the beta1 integrin subunit. Our results suggest that this naturally occurring green tea polyphenol may thus be used as a nutraceutical therapeutic agent in targeting the invasive character of medulloblastomas.