2020
DOI: 10.48550/arxiv.2010.10189
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Primitive Recursive Ordered Fields and Some Applications

Abstract: We establish primitive recursive versions of some known facts about computable ordered fields of reals and computable reals, and then apply them to proving primitive recursiveness of some natural problems in linear algebra and analysis. In particular, we find a partial primitive recursive analogue of Ershov-Madison's theorem about real closures of computable ordered fields, relate the corresponding fields to the primitive recursive reals, give sufficient conditions for primitive recursive root-finding, computi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?