2013
DOI: 10.4995/msel.2013.1905
|View full text |Cite
|
Sign up to set email alerts
|

Principal component analysis applied to remote sensing

Abstract: El objetivo principal de este artículo es mostrar una aplicación del análisis de componentes principales (PCA) que se utiliza en dos grados de la ciencia. En particular, se utilizó el análisis de PCA para obtener información de la cobertura del suelo a partir de imágenes de satélite. Tres imágenes Landsat fueron seleccionadas a partir de dosáreas que se encuentran en los municipios de Gandia y Vallat, ambos en la provincia de Valencia (España). En la primeraárea de estudio, se utilizó una sola imagen Landsat d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

3
31
0

Year Published

2015
2015
2023
2023

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 68 publications
(39 citation statements)
references
References 1 publication
3
31
0
Order By: Relevance
“…[53][54][55][56][57][58] It is particularly effective in the analysis of changes in multitemporal image datasets. The purpose of using PCA is to reduce the dimensionality of the data, i.e., the number of original bands, to characterize the amount of information into a few principal components.…”
Section: Principal Component Analysis Utilitymentioning
confidence: 99%
See 1 more Smart Citation
“…[53][54][55][56][57][58] It is particularly effective in the analysis of changes in multitemporal image datasets. The purpose of using PCA is to reduce the dimensionality of the data, i.e., the number of original bands, to characterize the amount of information into a few principal components.…”
Section: Principal Component Analysis Utilitymentioning
confidence: 99%
“…The purpose of using PCA is to reduce the dimensionality of the data, i.e., the number of original bands, to characterize the amount of information into a few principal components. 57 58 Even the tasseled cap (TC) transformation is based on the method of the PCA combined with empirical observations. [53][54][55][56][57][58] It is particularly effective in the analysis of changes in multitemporal image datasets.…”
Section: Principal Component Analysis Utilitymentioning
confidence: 99%
“…Most successful attempts have the PC eigenvalue standard from 1.5 to 5.4 (Estornell et al 2013;Munyati 2004;Jensen 1996). This condition was chosen based on the common practice in PCA applications, since there is less specific information regarding the standard when dealing with remotely sensed images.…”
Section: Methodsmentioning
confidence: 99%
“…The first (schistose sandstone) is Precambrian A-Tabular of higher formations, and the second (sandstone of granules) is Precambrian A-Tabular of medium formations. Principal Component Analysis (PCA) consists of defining new channels that summarize the information contained in an image in multispectral space [19,20]. This method aims to maximize (statistically) the amount of information (or variance) of original data in a restricted number of components [11,21].…”
Section: Lithological Mappingmentioning
confidence: 99%