For many decades the multispectral images of the earth’s surface and its objects were taken from multispectral sensors placed on satellites. In recent years, the technological evolution produced similar sensors (much smaller in size and weight) which can be placed on Unmanned Aerial Vehicles (UAVs), thereby allowing the collection of higher spatial resolution multispectral images. In this paper, Parrot’s small Multispectral (MS) camera Sequoia+ is used, and its images are evaluated at two archaeological sites, on the Byzantine wall (ground application) of Thessaloniki city (Greece) and on a mosaic floor (aerial application) at the archaeological site of Dion (Greece). The camera receives RGB and MS images simultaneously, a fact which does not allow image fusion to be performed, as in the standard utilization procedure of Panchromatic (PAN) and MS image of satellite passive systems. In this direction, that is, utilizing the image fusion processes of satellite PAN and MS images, this paper demonstrates that with proper digital processing the images (RGB and MS) of small MS cameras can lead to a fused image with a high spatial resolution, which retains a large percentage of the spectral information of the original MS image. The high percentage of spectral fidelity of the fused images makes it possible to perform high-precision digital measurements in archaeological sites such as the accurate digital separation of the objects, area measurements and retrieval of information not so visible with common RGB sensors via the MS and RGB data of small MS sensors.