2022
DOI: 10.31764/jtam.v6i4.10223
|View full text |Cite
|
Sign up to set email alerts
|

Principal Component Regression Modelling with Variational Bayesian Approach to Overcome Multicollinearity at Various Levels of Missing Data Proportion

Abstract: This study aims to model Principal Component Regression (PCR) using Variational Bayesian Principal Component Analysis (VBPCA) with Ordinary Least Square (OLS) as a method of estimating regression parameters to overcome multicollinearity at various levels of the proportion of missing data. The data used in this study are secondary data and simulation data contaminated with collinearity in the predictor variables with various missing data proportions of 1%, 5%, and 10%. The secondary data used is the Human Depth… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?