We consider the system of Volterra integro-dynamic equations
B(t, s)x(s)∆sand obtain necessary and sufficient conditions for the uniform stability of the zero solution employing the resolvent equation coupled with the variation of parameters formula. The resolvent equation that we use for the study of stability will have to be developed since it is unknown for time scales. At the end of the paper, we furnish an example in which we deploy an appropriate Lyapunov functional. In addition to generalization, the results of this paper provides improvements for its counterparts in integro-differential and integro-difference equations which are the most important particular cases of our equation.