This paper presents the synthesis of silver nanoparticles (AgNPs) functionalized with fluorescent molecules, in particular with xanthene-based dyes, i.e., fluorescein isothiocyanate (FITC, λmax = 485 nm) and rhodamine B isothiocyanate (RITC, λmax = 555 nm). An in-depth characterization of the particle–dye systems, i.e., AgNPs–RITC and AgNPs–FITC, is presented to evaluate their chemical structure and optical properties due to the interaction between their plasmonic and absorption properties. UV–Vis spectroscopy and the dynamic light scattering (DLS) measurements confirmed the nanosize of the AgNPs–RITC and AgNPs–FITC. Synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS) was used to study the chemical surface functionalization by structural characterization, confirming/examining the isothiocyanate–metal interaction. For AgNPs–RITC, in which the plasmonic and fluorescence peak are not superimposed, the transient dynamics of the dye fluorescence were also studied. Transient absorption measurements showed that by exciting the AgNPs–RITC sample at a wavelength corresponding to the AgNP plasmon resonance, it was possible to preferentially excite the RITC dye molecules attached to the surface of the NPs with respect to the free dye molecules in the solution. These results demonstrate how, by combining plasmonics and fluorescence, these AgNPs can be used as promising systems in biosensing and imaging applications.