Increasing the efficiency of the solar energy harvesting system is an urgent need in light of the climate changes we live in nowadays. The most significant data to be processed in the photovoltaic harvesters are the curve of solar radiation intensity to achieve the maximum benefits of the solar incident light. This processing contains complicated procedures, and the used algorithms are also high computational power-consuming which makes using special software and high potential hardware essential requirements. An explanation of the Minimum Energy Effect method is presented in this article. Our proposed algorithm uses this method to provide a simple and high-accuracy mathematical tool for generating a simple alternative curve instead of the complicated original nonlinear curve of solar radiation intensity. The produced curve is suitable for further operations, such as derivatives, integrals, or even simple addition/subtraction. Our algorithm provides a gradual procedure to find an optimum solution of the equation system, unlike the iterative methods. In addition, the results of analyzing the effect of time-division density showed the relationship between the speed of solving the task and the accuracy of results.