Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Cardiovascular diseases (CVDs) remain one of the leading causes of morbidity and mortality worldwide, with genetics being a major risk factor. Genetic cardiovascular disease can occur either because of single variant (Mendelian) or polygenic influences and has been linked to inherited cardiovascular conditions (ICC) such as arrhythmias, cardiomyopathies, dyslipidemias, and aortopathies which are significant factors leading to sudden cardiac death in young adults. Timely screening, diagnosis, and management of ICC can not only provide life-saving treatment to a patient, but also identify at-risk family members. The field of pharmacogenomics (PGx) helped to understand the variable action of medications such as clopidogrel, aspirin, warfarin, and statin according to genotype. Newer technologies such as multi-omics can combine data from multiple sources such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiome. These advancements can contribute to the development of polygenic prediction scores and precision medicine tailored to individual genotypes. Substantial strides have been made in genetic-based therapeutics, gene editing technologies, and drug delivery systems, which have significantly expanded treatment options for patients with acquired or inherited CVDs. Although variable, the country- and society-specific guidelines on genetic testing for ICC and PGx and treatment are being continuously updated to keep up with ongoing research in the field. Along with appropriate knowledge, other factors including cost and availability of genetic testing play a vital role in the usage by both physicians and patients. With the advent of newer genetic testing for CVDs, a key factor is the availability of genetic counselors (GCs) who are specifically trained in cardiovascular genomics. The current review provides a concise summary of the major influences of genetics in the diagnosis and treatment of CVDs.
Cardiovascular diseases (CVDs) remain one of the leading causes of morbidity and mortality worldwide, with genetics being a major risk factor. Genetic cardiovascular disease can occur either because of single variant (Mendelian) or polygenic influences and has been linked to inherited cardiovascular conditions (ICC) such as arrhythmias, cardiomyopathies, dyslipidemias, and aortopathies which are significant factors leading to sudden cardiac death in young adults. Timely screening, diagnosis, and management of ICC can not only provide life-saving treatment to a patient, but also identify at-risk family members. The field of pharmacogenomics (PGx) helped to understand the variable action of medications such as clopidogrel, aspirin, warfarin, and statin according to genotype. Newer technologies such as multi-omics can combine data from multiple sources such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiome. These advancements can contribute to the development of polygenic prediction scores and precision medicine tailored to individual genotypes. Substantial strides have been made in genetic-based therapeutics, gene editing technologies, and drug delivery systems, which have significantly expanded treatment options for patients with acquired or inherited CVDs. Although variable, the country- and society-specific guidelines on genetic testing for ICC and PGx and treatment are being continuously updated to keep up with ongoing research in the field. Along with appropriate knowledge, other factors including cost and availability of genetic testing play a vital role in the usage by both physicians and patients. With the advent of newer genetic testing for CVDs, a key factor is the availability of genetic counselors (GCs) who are specifically trained in cardiovascular genomics. The current review provides a concise summary of the major influences of genetics in the diagnosis and treatment of CVDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.