Abstract:We developed a method to enhance compositional mapping from spectral remote sensing through the integration of visible to near infrared (VNIR,~0.4-1 µm), shortwave infrared (SWIR,~1-2.5 µm), and longwave infrared (LWIR,~8-13 µm) data. Spectral information from the individual ranges was first analyzed independently and then the resulting compositional information in the form of image endmembers and apparent abundances was integrated using ISODATA cluster analysis. Independent VNIR, SWIR, and LWIR analyses of a study area near Mountain Pass, California identified image endmembers representing vegetation, manmade materials (e.g., metal, plastic), specific minerals (e.g., calcite, dolomite, hematite, muscovite, gypsum), and general lithology (e.g., sulfate-bearing, carbonate-bearing, and silica-rich units). Integration of these endmembers and their abundances produced a final full-range classification map incorporating much of the variation from all three spectral ranges. The integrated map and its 54 classes provide additional compositional information that is not evident in the VNIR, SWIR, or LWIR data alone, which allows for more complete and accurate compositional mapping. A supplemental examination of hyperspectral LWIR data and comparison with the multispectral LWIR data used in the integration illustrates its potential to further improve this approach.