Cultured meat is an emerging technology with the potential to solve huge challenges related to the environmental, ethical, and health implications of conventional meat production. Establishing the basic science of cultured meat has been the primary focus of the last decade but it is now feasible that cultured meat products will enter the market within the next 3 to 4 years. This proximity to market introduction demands an evaluation of aspects of the cultured meat production process that have not yet been outlined or discussed in significant detail. For example, one technological approach for the production of cultured meat uses adult muscle stem cells, the limited proliferative capacity of which necessitates repeated collection of tissue samples via biopsies of living donor animals. The selection of donor animals and the details of biopsy processes must be optimized, as this is a key bottleneck in the cultured meat production process. The number of stem cells harvested from a biopsy, together with their proliferative capacity, determines a ‘multiplicity factor’ achieved by a cultured meat production process, thus dictating the reduction in number of animals required to produce a given quantity of meat. This article considers potential scenarios for these critical upstream steps, focusing on the production of cultured beef as an example. Considerations related to donor selection and details of the biopsy process are discussed in detail. The practicalities of various scenarios for cultured beef production, the health of donor animals, and regulatory issues associated with the safety of cultured meat for consumers are also considered. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.