and modifying the charge transporting layers (CTLs), yet the interfacial mismatch between perovskite and CTLs is a non-negligible issue that dominates the efficiency and stability of corresponding devices. [7][8][9][10][11] Nickel oxide (NiO x ) nanocrystals as a promising stable hole transporting layer (HTL) in inverted p-i-n PVSCs are less prone to hysteresis and work well with flexible or tandem architectures. [12] Nevertheless, the PCE of NiO x -based inverted devices are usual inferior to the organic regular counterparts owing to the several interfacial issues: i) abundant surface traps and mismatch energy level restrict the charge carrier extraction, causing large energy offset; [13] ii) the redox reaction between Ni 3+ and A-site cation salts form a PbI 2 -rich hole extraction barrier, leading to severe interfacial destruction; [14] iii) inconsistent thermal expansion of lattice units in NiO x and perovskite results in tensile strain, prejudicing the microstructure and accelerating the degradation of perovskite. [15][16][17] Therefore, it is urge to solve these issues for performance enhancement and commercialization application of NiO x -based PVSCs.Recently, a great deal of molecular interlayers have been applied to passivate or adjust the energy level of NiO x /perovskite interface for strengthen the efficiency and stability in p-i-n devices, such as inorganic salts, [18][19][20] acids, [21] fullerene derivatives [22] and polymers buffer layer. [23][24][25] Nevertheless, most of the buffer layers are nonconductive and accompanied with the uncontrollable thickness and uniformity, which undoubtedly affect the optimization of charge transfer and perovskite crystal growth. Relatively speaking, the self-assembled small-molecule (SASM) can form thermodynamically favored ordered self-assembled layer that has been extensively proved as effective modifier to modulate the energy level and surface chemical state, as well as enhance the affinities of the deposition layer and substrate. [26] For instance, Fang et al. has reported that a polar chlorine-terminated SASM can modulate the energy-level alignment by forming a dipole moment at the interface. [27] Chen et al. has regulated the crystalline process and optimized the morphology of perovskite film by using 3-aminopropanioc acid SASM modified titanium oxide. [28] Other SASMs with different chemical terminations (such as amines, [29] carboxylates, [30] thiols, [31] and phosphonic acid [32] ) are also demonstrated to dramatically modify the electron Interfacial lattice mismatch and adverse reaction are the key issues hindering the development of nickel oxide (NiO x )-based inverted perovskite solar cells (PVSCs). Herein, a p-chlorobenzenesulfonic acid (CBSA) self-assembled small-molecule (SASM) is adopted to anchor NiO x and perovskite crystals to endow dual-passivation. The chlorine terminal of SASMs can provide growth sites for perovskite, leading to interfacial strain release. Meanwhile, the sulfonic acid group from SASMs can passivate surface defects of NiO x ,...