Dielectric elastomer actuators (DEAs) are one of the promising actuation technologies for soft robotics. This study proposes a fiber-shaped DEA, namely dielectric elastomer fiber actuators (DEFAs). The actuator consisted of a silicone tube filled with the aqueous electrode (sodium chloride solution). Furthermore, it could generate linear and bending actuation in a water environment, which acts as the ground side electrode. Linear-type DEFA and bending-type DEFA were fabricated and characterized to prove the concept. A mixture of Ecoflex 00–30 (Smooth-On) and Sylgard 184 (Dow Corning) was employed in these actuators for the tube part, which was 75.0-mm long with outer and inner diameters of 6.0 mm and 5.0 mm, respectively. An analytical model was constructed to design and predict the behavior of the devices. In the experiments, the linear-type DEFA exhibited an actuation strain and force of 1.3% and 42.4 mN, respectively, at 10 kV (~20 V/µm) with a response time of 0.2 s. The bending-type DEFA exhibited an actuation angle of 8.1° at 10 kV (~20 V/µm). Subsequently, a jellyfish-type robot was developed and tested, which showed the swimming speed of 3.1 mm/s at 10 kV and the driving frequency of 4 Hz. The results obtained in this study show the successful implementation of the actuator concept and demonstrate its applicability for soft robotics.