PE has been explored for the manufacturing of flexible and stretchable electronic devices by printing functional inks containing soluble or dispersed materials, [14][15][16] which has enabled a wide variety of applications, such as transparent conductive films (TCFs), flexible energy harvesting and storage, thin film transistors (TFTs), electroluminescent devices, and wearable sensors. [17][18][19][20][21][22][23][24] The global PE market should reach $26.6 billion by 2022 from $14.0 billion in 2017 at a compound annual growth rate of 13.6%. [25] PE devices are manufactured by a variety of printing technologies. Typical printing technologies can be divided into two broad categories: noncontact patterning (or nozzle-based patterning) and contact-based patterning. The noncontact techniques include inkjet printing, electrohydrodynamic (EHD) printing, aerosol jet printing, and slot die coating, while screen printing, gravure printing, and flexographic printing are examples of the contact techniques. Each of these techniques has its own advantages and disadvantages, but they all rely on the principle of transferring inks to a substrate. Understanding the characteristics and recent advances of each printing technique is important to further the progress in PE. Moreover, to promote the lab-scale printing technologies to large-scale production process, roll-toroll (R2R) printing, which is one of the manufacturing methods to obtain large-area films with low cost and excellent durability, has drawn much attention from both industry and the research community.Nearly all of devices based on PE require conductive structures, interconnects, and contacts; therefore, highly conductive patterns, usually with high transparency and/or high resolution, fabricated by means of printing conductive materials are one of the most critical components in PE devices. Various printable conductive nanomaterials, such as metal nanomaterials (e.g., metal nanoparticles and metal nanowires) and carbon nanomaterials (e.g., graphene and carbon nanotubes (CNTs)), have been explored and used as major materials for PE. Applying printing technology to deposition of the conductive nanomaterials requires formulation of suitable inks. After depositing inks on different substrates, post-printing treatment,
Printed electronics is attracting a great deal of attention in both research and commercialization as it enables fabrication of large-scale, low-cost electronic devices on a variety of substrates. Printed electronics plays a critical role infacilitating widespread flexible electronics and more recently stretchable electronics. Conductive nanomaterials, such as metal nanoparticles and nanowires, carbon nanotubes, and graphene, are promising building blocks for printed electronics. Nanomaterial-based printing technologies, formulation of printable inks, post-printing treatment, and integration of functional devices have progressed substantially in the recent years. This review summarizes basic principles and recent development of common printing technologie...