Collagen-based scaffolds are gaining more prominence in the field of tissue engineering. However, readily available collagen scaffolds either lack the rigid structure (hydrogels) and/or the organization (biopapers) seen in many organ tissues, such as the cornea and meniscus. Direct-write electrospinning is a promising potential additive manufacturing technique for constructing highly ordered fibrous scaffolds for tissue engineering and foundational studies in cellular behavior, but requires specific process parameters (voltage, relative humidity, solvent) in order to produce organized structures depending on the polymer chosen. To date, no work has been done to optimize direct-write electrospinning parameters for use with pure collagen. In this work, a custom electrospinning 3D printer was constructed to derive optimal direct write electrospinning parameters (voltage, relative humidity and acetic acid concentrations) for pure collagen. A LabVIEW program was built to automate control of the print stage. Relative humidity and electrospinning current were monitored in real-time to determine the impact on fiber morphology. Fiber orientation was analyzed via a newly defined parameter (spin quality ratio (SQR)). Finally, tensile tests were performed on electrospun fibrous mats as a proof of concept.