This paper considers properties of half-normal distribution using informative priors under the Bayesian criterion. It employs the squared root inverted gamma, Chi-square and Rayleigh distributions as the prior distribution to construct the Posterior distributions of the respective distributional parameters. Hyperparameters are elicited via prior predictive distribution. The properties of posterior distribution are studied, and their graphs are presented using a real data set. A comprehensive simulation scheme is conducted using informative priors. Bayes estimates are obtained using the loss functions (squared error loss function, modified loss function, quadratic loss function and Degroot loss function). Statistical inferences interval estimates and Bayesian hypothesis testing are presented to demonstrate the usefulness of the study.