Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The measurement of the in vivo raw pH of vegetative organs is a unusual way obtaining plant knowledge. The authenticity of the pH parameter of the leaf and its independence from soil pH has already been highlighted. In the present work we observe how and to what extent water-temperature mechanisms as well as bio-fertilizers inocula can affect the raw pH and how great the biodiversity is in plants. A trial with Arabidopsis thaliana in a phytotrone has shown that, in the dark, the raw pH did not change from +18 to +35 °C (b = -0.0027 N.S.), while in the light, the regression coefficients were significant and negative, and the acidification in the leaves progressed from high (-0.0097) to normal (-0.0127) and then to low (-0.0370) water levels. We have confirmed that warming induces a decrease of raw petiole pH of -0.070 pH C°-1 in grapevine leaves. In accordance with water-temperature mechanisms, the raw pH in grapevines has been found to be significantly higher in well-watered plants (pH = 4.29) than in stressed ones (4.12), with a pH decay of -3.9%. On the other hand, an average reduction of 0.10 units of raw pH would signal an increase in water stress of about -0.59 Mpa. Among the phenomena that can influence the raw pH, we have outlined three biotic factors: i) acidification as a result of a symbiotic farming fertilization i.e through the use of mycorrhizal and microbial fertilizers, with an average decay of around -3%, as a probable signature of symbiosis; ii) an “acida plantarum natura” scenario over 49 species, ranging from pH 3.06 to 6.38 ; iii) a strong (R2= 0.9) inverse polynomial pseudo-relationship of the number of fungicide sprays on the raw pH in a set of 15 species. It is suggested that this simple new multifaceted parameter can deserve interest.
The measurement of the in vivo raw pH of vegetative organs is a unusual way obtaining plant knowledge. The authenticity of the pH parameter of the leaf and its independence from soil pH has already been highlighted. In the present work we observe how and to what extent water-temperature mechanisms as well as bio-fertilizers inocula can affect the raw pH and how great the biodiversity is in plants. A trial with Arabidopsis thaliana in a phytotrone has shown that, in the dark, the raw pH did not change from +18 to +35 °C (b = -0.0027 N.S.), while in the light, the regression coefficients were significant and negative, and the acidification in the leaves progressed from high (-0.0097) to normal (-0.0127) and then to low (-0.0370) water levels. We have confirmed that warming induces a decrease of raw petiole pH of -0.070 pH C°-1 in grapevine leaves. In accordance with water-temperature mechanisms, the raw pH in grapevines has been found to be significantly higher in well-watered plants (pH = 4.29) than in stressed ones (4.12), with a pH decay of -3.9%. On the other hand, an average reduction of 0.10 units of raw pH would signal an increase in water stress of about -0.59 Mpa. Among the phenomena that can influence the raw pH, we have outlined three biotic factors: i) acidification as a result of a symbiotic farming fertilization i.e through the use of mycorrhizal and microbial fertilizers, with an average decay of around -3%, as a probable signature of symbiosis; ii) an “acida plantarum natura” scenario over 49 species, ranging from pH 3.06 to 6.38 ; iii) a strong (R2= 0.9) inverse polynomial pseudo-relationship of the number of fungicide sprays on the raw pH in a set of 15 species. It is suggested that this simple new multifaceted parameter can deserve interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.