Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
To be useful and widely accepted, automated contact tracing schemes (also called exposure notification) need to solve two seemingly contradictory problems at the same time: they need to protect the anonymity of honest users while also preventing malicious users from creating false alarms. In this paper, we provide, for the first time, an exposure notification construction that guarantees the same levels of privacy and integrity as existing schemes but with a fully malicious database (notably similar to Auerbach et al. CT-RSA 2021) without special restrictions on the adversary. We construct a new definition so that we can formally prove our construction secure. Our definition ensures the following integrity guarantees: no malicious user can cause exposure warnings in two locations at the same time and that any uploaded exposure notifications must be recent and not previously uploaded. Our construction is efficient, requiring only a single message to be broadcast at contact time no matter how many recipients are nearby. To notify contacts of potential infection, an infected user uploads data with size linear in the number of notifications, similar to other schemes. Linear upload complexity is not trivial with our assumptions and guarantees (a naive scheme would be quadratic). This linear complexity is achieved with a new primitive: zero knowledge subset proofs over commitments which is used by our "no cloning" proof protocol. We also introduce another new primitive: set commitments on equivalence classes, which makes each step of our construction more efficient. Both of these new primitives are of independent interest.
To be useful and widely accepted, automated contact tracing schemes (also called exposure notification) need to solve two seemingly contradictory problems at the same time: they need to protect the anonymity of honest users while also preventing malicious users from creating false alarms. In this paper, we provide, for the first time, an exposure notification construction that guarantees the same levels of privacy and integrity as existing schemes but with a fully malicious database (notably similar to Auerbach et al. CT-RSA 2021) without special restrictions on the adversary. We construct a new definition so that we can formally prove our construction secure. Our definition ensures the following integrity guarantees: no malicious user can cause exposure warnings in two locations at the same time and that any uploaded exposure notifications must be recent and not previously uploaded. Our construction is efficient, requiring only a single message to be broadcast at contact time no matter how many recipients are nearby. To notify contacts of potential infection, an infected user uploads data with size linear in the number of notifications, similar to other schemes. Linear upload complexity is not trivial with our assumptions and guarantees (a naive scheme would be quadratic). This linear complexity is achieved with a new primitive: zero knowledge subset proofs over commitments which is used by our "no cloning" proof protocol. We also introduce another new primitive: set commitments on equivalence classes, which makes each step of our construction more efficient. Both of these new primitives are of independent interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.