In addition to the primary care context, medical images are often useful for research projects and community healthcare networks, so-called "secondary use". Patient privacy becomes an issue in such scenarios since the disclosure of personal health information (PHI) has to be prevented in a sharing environment. In general, most PHIs should be completely removed from the images according to the respective privacy regulations, but some basic and alleviated data is usually required for accurate image interpretation. Our objective is to utilize and enhance these specifications in order to provide reliable software implementations for de-and re-identification of medical images suitable for online and offline delivery. DICOM (Digital Imaging and Communications in Medicine) images are de-identified by replacing PHI-specific information with values still being reasonable for imaging diagnosis and patient indexing. In this paper, this approach is evaluated based on a prototype implementation built on top of the open source framework DCMTK (DICOM Toolkit) utilizing standardized de-and re-identification mechanisms. A set of tools has been developed for DICOM deidentification that meets privacy requirements of an offline and online sharing environment and fully relies on standardbased methods.