Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
No abstract
No abstract
Schizophrenia, a highly complex psychiatric disorder, presents significant challenges in diagnosis and treatment due to its multifaceted neurobiological underpinnings. Recent advancements in functional magnetic resonance imaging (fMRI) and artificial intelligence (AI) have revolutionized the understanding and management of this condition. This manuscript explores how the integration of these technologies has unveiled key insights into schizophrenia’s structural and functional neural anomalies. fMRI research highlights disruptions in crucial brain regions like the prefrontal cortex and hippocampus, alongside impaired connectivity within networks such as the default mode network (DMN). These alterations correlate with the cognitive deficits and emotional dysregulation characteristic of schizophrenia. AI techniques, including machine learning (ML) and deep learning (DL), have enhanced the detection and analysis of these complex patterns, surpassing traditional methods in precision. Algorithms such as support vector machines (SVMs) and Vision Transformers (ViTs) have proven particularly effective in identifying biomarkers and aiding early diagnosis. Despite these advancements, challenges such as variability in methodologies and the disorder’s heterogeneity persist, necessitating large-scale, collaborative studies for clinical translation. Moreover, ethical considerations surrounding data integrity, algorithmic transparency, and patient individuality must guide AI’s integration into psychiatry. Looking ahead, AI-augmented fMRI holds promise for tailoring personalized interventions, addressing unique neural dysfunctions, and improving therapeutic outcomes for individuals with schizophrenia. This convergence of neuroimaging and computational innovation heralds a transformative era in precision psychiatry.
In an era where data privacy and accessibility are paramount, federated learning emerges as a transformative paradigm, enabling collaborative AI model training across distributed healthcare datasets. This special collection brings together pioneering research and insights from academia and industry, exploring the intersection of federated with the future of data-driven healthcare. Join us in unravelling the potential of federated learning to revolutionize healthcare delivery while safeguarding patient privacy. Introduction of the Federated learning in digital healthcare special collection This collection underscores the profound implications of FL for patient-centric care, emphasizing the pivotal role of individuals in determining the trajectory of their healthcare journey. As we navigate the complexities of digital healthcare in the 21st century, the insights gleaned from this special collection serve as a compass guiding us towards a future where innovation converges with ethics and technology becomes a catalyst for equitable and inclusive healthcare delivery. In embracing the principles of federated learning, we embark on a journey towards a more resilient, responsive, and patient-centric healthcare ecosystem. Privacy preservation for federated learning in health care Artificial intelligence (AI) shows potential to improve health care by leveraging data to build models that can inform clinical workflows. However, access to large quantities of diverse data is needed to develop robust generalizable models. Data sharing across institutions is not always feasible due to legal, security, and privacy concerns. Federated learning (FL) allows for multi-institutional training of AI models, obviating data sharing, albeit with different security and privacy concerns. Specifically, insights exchanged during FL can leak information about institutional data. In addition, FL can introduce issues when there is limited trust among the entities performing the compute. With the growing adoption of FL in health care, it is imperative to elucidate the potential risks. We thus summarize privacy-preserving FL literature in this work with special regard to health care. We draw attention to threats and review mitigation approaches. We anticipate this review to become a health-care researcher’s guide to security and privacy in FL. Discussion: Emerging trends in federated learning We will discuss emerging trends of research in federated learning with the collection guest editors, authors and Patterns editors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.