Artificial neural network (ANN) is powerful in the artificial intelligence field and has been successfully applied to interpret complex image data in the real world. Since the majority of images are commonly known as private with the information intended to be used by the owner, such as handwritten characters and face, the private constraints form a major obstacle in developing high-precision image classifiers which require access to a large amount of image data belonging to multiple users. State-of-the-art privacy-preserving ANN schemes often use full homomorphic encryption which result in a substantial overhead of computation and data traffic for the data owners, and are restricted to approximation models by low-degree polynomials which lead to a large accuracy loss of the trained model compared to the original ANN model in the plain domain. Consequently, it is still a huge challenge to train an ANN model in the encrypted-domain. To mitigate this problem, we propose a privacy-preserving ANN system for secure constructing image classifiers, named IPPNN, where the server is able to train an ANN-based classifier on the combined image data of all data owners without being able to observe any images using primitives, such as randomization and functional encryption. Our system achieves faster training time and supports lossless training. Moreover, IPPNN removes the need for multiple communications among data owners and servers. We analyze the security of the protocol and perform experiments on a large scale image recognition task. The results show that the IPPNN is feasible to use in practice while achieving high accuracy.