Privacy-Preserving ConvMixer Without Any Accuracy Degradation Using Compressible Encrypted Images
Haiwei Lin,
Shoko Imaizumi,
Hitoshi Kiya
Abstract:We propose an enhanced privacy-preserving method for image classification using ConvMixer, which is an extremely simple model that is similar in spirit to the Vision Transformer (ViT). Most privacy-preserving methods using encrypted images cause the performance of models to degrade due to the influence of encryption, but a state-of-the-art method was demonstrated to have the same classification accuracy as that of models without any encryption under the use of ViT. However, the method, in which a common secret… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.