2022
DOI: 10.1101/2022.01.10.475610
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Privacy-Preserving Federated Neural Network Learning for Disease-Associated Cell Classification

Abstract: Training accurate and robust machine learning models requires a large amount of data that is usually scattered across data-silos. Sharing or centralizing the data of different healthcare institutions is, however, unfeasible or prohibitively difficult due to privacy regulations. In this work, we address this problem by using a novel privacy-preserving federated learning-based approach, PriCell, for complex machine learning models such as convolutional neural networks. PriCell relies on multiparty homomorphic en… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 42 publications
0
0
0
Order By: Relevance