a Selenium (Se) has received great attention in the last few years, as it is considered to be essential for human health (prevention of viral infections, heart diseases and ageing-related diseases). Se deficiency can be counteracted by the administration of selenium-enriched probiotics that are able to convert inorganic selenium into less toxic and more bio-available organic forms. This study was performed on Lactobacillus reuteri Lb2 BM DSM 16143, a probiotic LAB previously demonstrated to be able to fix Se into selenocysteines. The aim was to assess Se influence on its metabolism, by a 2-DE proteomic approach, on two different cellular districts: envelope-enriched and extracellular proteomes. While in the envelope-enriched fraction 15 differentially expressed proteins were identified, in the extracellular proteome no quantitative difference was detected. However, at a molecular level, we observed the insertion of Se into selenocysteine, exclusively under the stimulated conditions. The obtained results confirmed the possibility to use L. reuteri Lb2 BM DSM 16143 as a carrier of organic Se that can be easily released in the gut becoming available for the human host.