Abstract:Deep learning (DL) models have shown performance benefits across many applications, from classification to image-to-image translation. However, low interpretability often leads to unexpected model behavior once deployed in the real world. Usually, this unexpected behavior is because the training data domain does not reflect the deployment data domain. Identifying a model's breaking points under input conditions and domain shifts, i.e., input transformations, is essential to improve models. Although visual anal… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.