This work models an epidemic's spreading over time with a stochastic approach. The number of infections per infector is modeled as a discrete random variable, named here as contagion. Therefore, the evolution of the disease over time is a stochastic process. More specifically, this propagation is modeled as the Bienaymé-Galton-Watson process, one kind of branching process with discrete parameter. In this process, for a given time, the number of infected members, i.e. a generation of infected members, is a random variable. In the first part of this dissertation, given that the mass function of the contagion's random variable is known, four methodologies to find the mass function of the generations of the stochastic process are compared. The methodologies are: probability generating functions with and without polynomial identities, Markov chain and Monte Carlo simulations. The first and the third methodologies provide analytical expressions relating the contagion random variable and the generation's size random variable. These analytical expressions are used in the second part of this dissertation, where a classical inverse problem of bayesian parametric inference is studied. With the help of Bayes' rule, parameters of the contagion random variable are inferred from realizations of the stochastic process. The analytical expressions obtained in the first part of the work are used to build appropriate likelihood functions. In order to solve the inverse problem, two different ways of using data from the Bienaymé-Galton-Watson process are developed and compared: when data are realizations of a single generation of the branching process and when data is just one realization of the branching process observed over a certain number of generations. The criteria used in this work to stop the update process in the bayesian parametric inference uses the L 2 -Wasserstein distance, which is a metric based on optimal mass transference. All numerical and symbolical routines developed to this work are written in MATLAB.