This paper presents a reliability-based analysis of road vehicle accidents and the optimization of roadway radius and speed limit design based on vehicle dynamics, mainly focusing on windy environments. The performance functions are formulated as failure modes of vehicle rollover and sideslip and are defined on a finite set of basic variables with probabilistic characteristics, so-called random variables. The random variables are vehicle speed, steer angle, tire-road friction coefficient, road bank angle, and wind speed. The probability of accident was evaluated using the first-order reliability method (FORM) and numerical studies were conducted using a single-unit truck model. The analysis demonstrates that wind is a significant factor when assessing vehicle safety on roads, and probabilistic studies such as reliability-based design optimization (RBDO) are necessarily required to enhance vehicle safety in windy environments. Accordingly, design optimization of roadway radius and speed limit was conducted, and new designs were proposed satisfying the target reliability. This study suggests that probabilistic mechanics and theory can be of value for analysis and design of wind-related vehicle safety.