“…In this review, we will try to keep the presentation as simple as possible by presenting the problems, the hypotheses, and the ideas behind the methods without going in too many technical details but still presenting the state‐of‐the‐art results in the field. In particular, we will start from the first works of the 1960s about probability inequalities (Anguita, Boni, & Ridella, ; Anguita, Ghelardoni, Ghio, Oneto, & Ridella, ; Arlot, ; Arlot & Celisse, ; Bennett, ; Bentkus, ; Bernstein, ; Clopper & Pearson, ; Devroye & Wagner, ; Efron, , ; Efron & Tibshirani, ; Hoeffding, ; Koavi, ; Massart, ; Maurer & Pontil, ; Oneto, Ghio et al, ; Talagrand, ), and proceed with the asymptotic analysis (Abu‐Mostafa, ; Blumer, Ehrenfeucht, Haussler, & Warmuth, ; Floyd & Warmuth, ; Vapnik, ) of the 1970s, and concentration inequalities (Bobkov & Ledoux, ; Boucheron et al, , ; Bousquet, ; Klein & Rio, ; Ledoux, , ; Talagrand, , , ) of the 1980s, then move to the finite sample analysis (Ambroladze, Parrado‐Hernández, & Shawe‐Taylor, ; Anguita, Ghio et al, ; Anguita, Ghio, Oneto, & Ridella, ; Audibert, ; Audibert & Bousquet, ; Bartlett, Boucheron, & Lugosi, ; Bartlett, Bousquet, & Mendelson, , ; Bartlett & Mendelson, ; Bégin, Germain, Laviolette, & Roy, , ; Berend & Kontorovitch, ; Blanchard & Massart, ; Catoni, ; Gelman, Carlin, Stern, & Rubin, ; Germain, Lacasse, Laviolette, & Marchand, ; Germain, Lacasse, Laviolette, Marchand, & Roy, ; Germain, Lacoste, Marchand, Shanian, & Laviolette, ; Koltchinskii, , ; Lacasse, Laviolette, Marchand, Germain, & Usunier,…”